Z-score Table

Percentiles of the Standard Normal Distribution

Percentile Z-score Percentile Z-score
1 -2.326 50 0
2 -2.054 51 0.025
3 -1.881 52 0.05
4 -1.751 53 0.075
5 -1.645 54 0.1
6 -1.555 55 0.126
7 -1.476 56 0.151
8 -1.405 57 0.176
9 -1.341 58 0.202
10 -1.282 59 0.228
11 -1.227 60 0.253
12 -1.175 61 0.279
13 -1.126 62 0.305
14 -1.08 63 0.332
15 -1.036 64 0.358
16 -0.994 65 0.385
17 -0.954 66 0.412
18 -0.915 67 0.44
19 -0.878 68 0.468
20 -0.842 69 0.496
21 -0.806 70 0.524
22 -0.772 71 0.553
23 -0.739 72 0.583
24 -0.706 73 0.613
25 -0.674 74 0.643
26 -0.643 75 0.674
27 -0.613 76 0.706
28 -0.583 77 0.739
29 -0.553 78 0.772
30 -0.524 79 0.806
31 -0.496 80 0.842
32 -0.468 81 0.878
33 -0.44 82 0.915
34 -0.412 83 0.954
35 -0.385 84 0.994
36 -0.358 85 1.036
37 -0.332 86 1.08
38 -0.305 87 1.126
39 -0.279 88 1.175
40 -0.253 89 1.227
41 -0.228 90 1.282
42 -0.202 91 1.341
43 -0.176 92 1.405
44 -0.151 93 1.476
45 -0.126 94 1.555
46 -0.1 95 1.645
47 -0.075 96 1.751
48 -0.05 97 1.881
49 -0.025 98 2.054
50 0 99 2.326

The Standard Normal Distribution

Calculate percentiles

P = Mean + Z-score x Standard deviation

or

P = Mean x [1 + (Coefficient of variation x Z-score)]

In the Standard Normal Distribution, the mean and median are the same, so in the formula to calculate percentiles you can also use the median or percentile 50 instead of the mean.